(2x^2-7)/3=13

Simple and best practice solution for (2x^2-7)/3=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2-7)/3=13 equation:



(2x^2-7)/3=13
We move all terms to the left:
(2x^2-7)/3-(13)=0
We multiply all the terms by the denominator
(2x^2-7)-13*3=0
We add all the numbers together, and all the variables
(2x^2-7)-39=0
We get rid of parentheses
2x^2-7-39=0
We add all the numbers together, and all the variables
2x^2-46=0
a = 2; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·2·(-46)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{23}}{2*2}=\frac{0-4\sqrt{23}}{4} =-\frac{4\sqrt{23}}{4} =-\sqrt{23} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{23}}{2*2}=\frac{0+4\sqrt{23}}{4} =\frac{4\sqrt{23}}{4} =\sqrt{23} $

See similar equations:

| g+81/6=15 | | 7g+81/6=15 | | -2(x+1)=-7x+23 | | -5v-6=3(v+6) | | 89=247-v | | 258=177-u | | 70=6u | | -y+242=118 | | y+9y=16 | | 39/2=x/429 | | 6s÷8=6s-8 | | -2x²+162=0 | | Y=4.5x-8 | | 141=m*1 | | 4+6X+20+x=180 | | e+13=28 | | x+(1-x)=10.09090909 | | x+(1-x)=10. | | -(7x-35)+(25+x)=180 | | x^2+59x-180=0 | | 4a-8-8a-10=180 | | -5(x+1)=-18+8x | | Fx4=1.2 | | 12/24=x/15 | | -8=-6+x/10 | | -8=-6(x/10) | | -8=-6x/10 | | 10.50+x=1935 | | p/5+4=14 | | 8= –2(y +5) | | -6n-15=-7-8(1+7n) | | 25=r*r |

Equations solver categories